Numerical results 0000000000

Approximating Lévy processes with completely monotone jumps

Daniel Hackmann

Department of Mathematics and Statistics York University Toronto, Canada

September 25, 2014

Joint work with Alexey Kuznetsov.

Daniel Hackmann

э

1 Introduction

2 Theoretical results

3 Numerical results

Daniel Hackmann

<ロ> (四) (四) (日) (日) (日)

Definitions and notations

A Lévy process X is specified by the triple (a, σ^2, Π) , where $a \in \mathbb{R}$, $\sigma \ge 0$ and $\Pi(\mathrm{d}x)$ satisfies $\int_{\mathbb{R}} \min(1, x^2) \Pi(\mathrm{d}x) < \infty$.

The Laplace exponent $\psi(z)$ is defined as

$$\mathbb{E}\left[e^{zX_t}\right] = e^{t\psi(z)}, \quad \operatorname{Re}(z) = 0.$$

The Lévy-Khintchine representation for $\psi(z)$ is

$$\psi(z) = \frac{\sigma^2 z^2}{2} + az + \int_{\mathbb{R}} \left(e^{zx} - 1 - zx \mathbf{1}_{\{|x| < 1\}} \right) \Pi(\mathrm{d}x).$$

- 4 同 ト - 4 日 ト - 4 日 ト

э

Definitions and notations

- We define the supremum $\overline{X}_t = \sup\{X_s : 0 \le s \le t\}$ and similarly for the infimum \underline{X}_t ;
- e(q) denotes an exponential random variable (with mean 1/q), independent of X;
- Define $S_q = \overline{X}_{e(q)}$ and $I_q = \underline{X}_{e(q)}$
- The Wiener-Hopf factors are defined as $\phi_q^+(z) = \mathbb{E}[\exp(-zS_q)]$ and $\phi_q^-(z) = \mathbb{E}[\exp(zI_q)];$

Wiener-Hopf factorization

• $X_{e(q)} - S_q$ is independent of S_q and has the same distribution as I_q .

Wiener-Hopf factorization

• $X_{e(q)} - S_q$ is independent of S_q and has the same distribution as I_q .

$$\frac{q}{q-\psi(z)} = \phi_q^+(-z)\phi_q^-(z),$$

since

$$\frac{q}{q-\psi(z)} = \mathbb{E}\left[e^{zX_{e(q)}}\right] = \mathbb{E}\left[e^{z(X_{e(q)}-S_q)+zS_q}\right]$$

Wiener-Hopf factorization

• $X_{e(q)} - S_q$ is independent of S_q and has the same distribution as I_q .

$$\frac{q}{q-\psi(z)} = \phi_q^+(-z)\phi_q^-(z),$$

since

$$\frac{q}{q-\psi(z)} = \mathbb{E}\left[e^{zX_{\mathbf{e}(q)}}\right] = \mathbb{E}\left[e^{z(X_{\mathbf{e}(q)}-S_q)+zS_q}\right]$$

• If we can factorize $q/(q - \psi(z))$ as a product of two functions $f^{\pm}(z)$, such that $f^{+}(z)$ {resp. $f^{-}(z)$ } is analytic and zero-free in the half-plane $\operatorname{Re}(z) > 0$ {resp. $\operatorname{Re}(z) < 0$ }, (plus some growth conditions) - then we can identify $\phi_{q}^{\pm}(z) = f^{\pm}(z)$.

• We want processes with jumps of infinite activity (and sometimes of infinite variation).

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

- We want processes with jumps of infinite activity (and sometimes of infinite variation).
- In order to price European options we need to have explicit formulas for the Laplace exponent $\psi(z)$

(人間) シスヨン スヨン

э

- We want processes with jumps of infinite activity (and sometimes of infinite variation).
- In order to price European options we need to have explicit formulas for the Laplace exponent $\psi(z)$
 - Carr, P. and Madan, D.,
 Option pricing and the fast Fourier transform. Quantitative Finance, 2(4):61-73, 1999.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We want processes with jumps of infinite activity (and sometimes of infinite variation).
- \blacksquare In order to price European options we need to have explicit formulas for the Laplace exponent $\psi(z)$
 - Carr, P. and Madan, D.,
 Option pricing and the fast Fourier transform. Quantitative Finance, 2(4):61-73, 1999.
- The basic building blocks for pricing various exotic options (barrier/lookback/Asian/etc.) are the distributions of I_q and S_q , so we need explicit Wiener-Hopf factors.

(人間) シスヨン スヨン

- We want processes with jumps of infinite activity (and sometimes of infinite variation).
- \blacksquare In order to price European options we need to have explicit formulas for the Laplace exponent $\psi(z)$
 - Carr, P. and Madan, D.,
 Option pricing and the fast Fourier transform. Quantitative Finance, 2(4):61-73, 1999.
- The basic building blocks for pricing various exotic options (barrier/lookback/Asian/etc.) are the distributions of I_q and S_q , so we need explicit Wiener-Hopf factors.
 - Jeannin, M. and Pistorius, M., A transform approach to calculate prices and greeks of barrier options driven by a class of Lévy processes. *Quantitative Finance*, 10:629–644, 2010.

・日本 ・ 日本 ・ 日本

Popular processes in mathematical finance

	Variance	Normal	Generalized	Hyper-
	Gamma	Inverse	Tempered	exponential
	(VG)	Gaussian	Stable	
		(NIG)	(CGMY or	
			KoBol)	
Activity	Infinite	Infinite	Parameter	Finite
			dependent	
Variation	Finite	Infinite	Parameter	Finite
			dependent	
WHF	No explicit	No explicit	No explicit	Rational
	form	form	form	function

E.g.: The Laplace exponent of the VG process:

$$\psi(z) = z\gamma + \frac{1}{k}\ln\left(1 - \frac{\sigma^2 k}{2}z^2 - \theta kz\right).$$

(人間) とうり くうり

э

Completely monotone jumps

Definition

A function f(x) is called completely monotone if $(-1)^n f^{(n)}(x) > 0$ for all x > 0, n = 0, 1, 2, ...

Definition

A Lévy process has completely monotone jumps, if $\Pi(dx)$ is absolutely continuous with density $\pi(x)$, and $\pi(x)$ and $\pi(-x)$ are completely monotone for $x \in (0, \infty)$.

Theorem

The jump density of a process X is completely monotone if and only if S_q and I_q are mixtures of exponentials.

L.C.G. Rogers.

Wiener-Hopf factorization of diffusions and Lévy processes. Proc. London Math. Soc., 47(3):177–191, 1983.

Hyperexponential processes

■ The density of the Lévy measure is

$$\pi(x) = \mathbb{I}_{\{x>0\}} \sum_{i=1}^{N} a_i \rho_i e^{-\rho_i x} + \mathbb{I}_{\{x<0\}} \sum_{i=1}^{\hat{N}} \hat{a}_i \hat{\rho}_i e^{\hat{\rho}_i x},$$

where all the coefficients are positive.

• The Laplace exponent is a rational function

$$\psi(z) = \frac{\sigma^2}{2}z^2 + \mu z + z\sum_{i=1}^N \frac{a_i}{\rho_i - z} - z\sum_{i=1}^{\hat{N}} \frac{\hat{a}_i}{\hat{\rho}_i + z}$$

・ロッ ・回 ・ ・ ヨッ

э

Hyperexponential processes

Assume $\sigma > 0$.

■ The Wiener-Hopf factors are given by

$$\phi_q^+(z) = \frac{1}{1 + \frac{z}{\zeta_1}} \prod_{i=1}^N \frac{1 + \frac{z}{\rho_i}}{1 + \frac{z}{\zeta_{i+1}}}, \quad \phi_q^-(z) = \frac{1}{1 + \frac{z}{\zeta_1}} \prod_{i=1}^N \frac{1 + \frac{z}{\hat{\rho}_i}}{1 + \frac{z}{\zeta_{i+1}}},$$

where ζ_i and $\hat{\zeta}_i$ are the (real) solutions to $\psi(z) = q$. The distribution of S_q is a mixture of exponentials

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathbb{P}(S_q \le x) = \sum_{i=1}^{N+1} c_i \zeta_i e^{-\zeta_i x},$$

where $c_i > 0$ and $\sum c_i = 1$, and similarly for I_q .

• Processes with hyper-exponential jumps are great to work with, but...

Summary

- Processes with hyper-exponential jumps are great to work with, but...
- we have a problem: we can't have jumps of infinite activity/infinite variation.

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Summary

- Processes with hyper-exponential jumps are great to work with, but...
- we have a problem: we can't have jumps of infinite activity/infinite variation.
- The other processes are completely montone and have infinite activity, but we do not have closed form expressions for the Wiener-Hopf factors.

- 4 同 ト - 4 日 ト - 4 日 ト

э.

Summary

- Processes with hyper-exponential jumps are great to work with, but...
- we have a problem: we can't have jumps of infinite activity/infinite variation.
- The other processes are completely montone and have infinite activity, but we do not have closed form expressions for the Wiener-Hopf factors.
- How do we approximate a general Lévy process with completely monotone jumps by a hyperexponential process?

・ロッ ・ 一 マ ・ コ ・ ・ 日 ・

э

Numerical results 0000000000

Outline

2 Theoretical results

3 Numerical results

Daniel Hackmann

<ロ> (四) (四) (日) (日) (日)

• Approximating a Lévy process is equivalent to approximating its Laplace exponent $\psi(z)$.

・ロト ・四ト ・ヨト ・ヨト

ъ

- Approximating a Lévy process is equivalent to approximating its Laplace exponent $\psi(z)$.
- The Laplace exponent of a hyperexponential process is a rational function.

・ロッ ・回 ・ ・ ヨッ

э.

- Approximating a Lévy process is equivalent to approximating its Laplace exponent $\psi(z)$.
- The Laplace exponent of a hyperexponential process is a rational function.
- Thus we have two problems:

・ロッ ・回 ・ ・ ヨッ

э

- Approximating a Lévy process is equivalent to approximating its Laplace exponent $\psi(z)$.
- The Laplace exponent of a hyperexponential process is a rational function.
- Thus we have two problems:
 - (1) Approximate $\psi(z)$ by a rational function $\tilde{\psi}(z)$,

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э

- Approximating a Lévy process is equivalent to approximating its Laplace exponent $\psi(z)$.
- The Laplace exponent of a hyperexponential process is a rational function.
- Thus we have two problems:
 - (1) Approximate $\psi(z)$ by a rational function $\tilde{\psi}(z)$,
 - (2) Show that $\tilde{\psi}(z)$ is itself a Laplace exponent of a Lévy process.

・ロン ・四マ ・ヨン ・ヨン

Padé approximation

Definition

Let f be a function with a power series representation $f(z) = \sum_{i=0}^{\infty} c_i z^i$. If there exist polynomials $P_m(z)$ and $Q_n(z)$ satisfying $\deg(P) \leq m$, $\deg(Q) \leq n$, $Q_n(0) = 1$ and

$$\frac{P_m(z)}{Q_n(z)} = c_0 + c_1 z + \dots + c_{m+n} z^{m+n} + O(z^{m+n+1}), \quad z \to 0,$$

then we say that $f^{[m/n]}(z) := P_m(z)/Q_n(z)$ is the [m/n] Padé approximant of f.

3

(1日) (日) (日)

Numerical results 0000000000

A simple example of Padé approximations

m \ n	0	1	2	3
0	$\frac{1}{1}$	$\frac{1}{1-z}$	$\frac{1}{1-z+\frac{1}{2}z^2}$	$\frac{1}{1-z+\frac{1}{2}z^2-\frac{1}{6}z^3}$
1	$\frac{1+z}{1}$	$\frac{1+\frac{1}{2}z}{1-\frac{1}{2}z}$	$\frac{1+\frac{1}{3}z}{1-\frac{2}{3}z+\frac{1}{6}z^2}$	$\frac{1+\frac{1}{4}z}{1-\frac{3}{4}z+\frac{1}{4}z^2-\frac{1}{24}z^3}$
2	$\frac{1+z+\frac{1}{2}z^2}{1}$	$\frac{1 + \frac{2}{3}z + \frac{1}{6}z^2}{1 - \frac{1}{3}z}$	$\frac{1 + \frac{1}{2}z + \frac{1}{12}z^2}{1 - \frac{1}{2}z + \frac{1}{12}z^2}$	$\frac{1+\frac{2}{5}z+\frac{1}{20}z^2}{1-\frac{3}{5}z+\frac{3}{20}z^2-\frac{1}{60}z^3}$
3	$\frac{1+z+\frac{1}{2}z^2+\frac{1}{6}z^3}{1}$	$\frac{1+\frac{3}{4}z+\frac{1}{4}z^2+\frac{1}{24}z^3}{1-\frac{1}{4}z}$	$\frac{1 + \frac{3}{5}z + \frac{3}{20}z^2 + \frac{1}{60}z^3}{1 - \frac{2}{5}z + \frac{1}{20}z^2}$	$\frac{1 + \frac{1}{2}z + \frac{1}{10}z^2 + \frac{1}{120}z^3}{1 - \frac{1}{2}z + \frac{1}{10}z^2 - \frac{1}{120}z^3}$
4	$\frac{1+z+\frac{1}{2}z^2+\frac{1}{6}z^3+\frac{1}{24}z^4}{1}$	$\frac{1 + \frac{4}{5}z + \frac{3}{10}z^2 + \frac{1}{15}z^3 + \frac{1}{120}z^4}{1 - \frac{1}{5}z}$	$\frac{1+\frac{2}{3}z+\frac{1}{5}z^2+\frac{1}{30}z^3+\frac{1}{360}z^4}{1-\frac{1}{3}z+\frac{1}{30}z^2}$	$\frac{1+\frac{4}{7}z+\frac{1}{7}z^2+\frac{2}{105}z^3+\frac{1}{840}z^4}{1-\frac{3}{7}z+\frac{1}{14}z^2-\frac{1}{210}z^3}$

Figure: The initial part of the Padé table for e^z

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Numerical results 0000000000

Gaussian quadrature

• ν is a finite positive measure on a closed bounded interval [a, b]

Daniel Hackmann

・ロト ・四ト ・ヨト ・ヨト

Gaussian quadrature

- ν is a finite positive measure on a closed bounded interval [a, b]
- For each n we want to find a measure $\tilde{\nu}_n$ on a finite number of points in [a, b] such that we match the first 2n 1 moments of ν , i.e.

$$\int_{[a,b]} x^{j} \nu(\mathrm{d}x) = \sum_{i}^{n} x_{i}^{j} w_{i}, \quad \text{, for } j = 1, \dots, 2n-1.$$

- 4 同 6 4 日 6 4 日 6

э

Gaussian quadrature

- ν is a finite positive measure on a closed bounded interval [a, b]
- For each n we want to find a measure $\tilde{\nu}_n$ on a finite number of points in [a, b] such that we match the first 2n 1 moments of ν , i.e.

$$\int_{[a,b]} x^j \nu(\mathrm{d}x) = \sum_{i=1}^n x_i^j w_i, \quad \text{, for } j = 1, \dots, 2n-1.$$

The points x_i and w_i are the nodes and weights of the Gaussian quadrature.

・ロッ ・回 ・ ・ ヨッ

э

Gaussian quadrature and orthogonal polynomials

• $\{p_n(x)\}_{n\geq 0}$ be the sequence of orthogonal polynomials with respect to the measure $\nu(dx)$: $\deg(p_n) = n$ and

$$(p_n, p_m)_\nu := \int_{[a,b]} p_n(x) p_m(x) \nu(dx) = d_n \delta_{n,m}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Gaussian quadrature and orthogonal polynomials

• $\{p_n(x)\}_{n\geq 0}$ be the sequence of orthogonal polynomials with respect to the measure $\nu(dx)$: $\deg(p_n) = n$ and

$$(p_n, p_m)_{\nu} := \int_{[a,b]} p_n(x) p_m(x) \nu(dx) = d_n \delta_{n,m}$$

The nodes of the Gaussian quadrature $\tilde{\nu}_n$ are the zeros of p_n and the weights may be calculated from p_{n-1}, p_n .

- 4 同 ト - 4 日 ト - 4 日 ト

Gaussian quadrature and orthogonal polynomials

• $\{p_n(x)\}_{n\geq 0}$ be the sequence of orthogonal polynomials with respect to the measure $\nu(dx)$: $\deg(p_n) = n$ and

$$(p_n, p_m)_\nu := \int_{[a,b]} p_n(x) p_m(x) \nu(dx) = d_n \delta_{n,m}$$

The nodes of the Gaussian quadrature $\tilde{\nu}_n$ are the zeros of p_n and the weights may be calculated from p_{n-1}, p_n .

G. Szegö. Orthogonal Polynomials. Amer. Math. Soc., Providence, RI, 4 edition, 1975.

Main theorem (two-sided case)

Assumption: The Lévy measure $\Pi(dx)$ is absolutely continuous, and its density $\pi(x)$ is completely monotone and decreases exponentially fast as $x \to \pm \infty$.

Using Bernstein's theorem, we see that there exists a positive measure μ , with support in $\mathbb{R} \setminus \{0\}$, such that for all $x \in \mathbb{R}$

$$\pi(x) = \mathbb{I}_{\{x>0\}} \int_{(0,\infty)} e^{-ux} \mu(\mathrm{d}u) + \mathbb{I}_{\{x<0\}} \int_{(-\infty,0)} e^{-ux} \mu(\mathrm{d}u).$$
(1)

We denote

$$\mu^*(A) = \mu(\{v \in \mathbb{R} : v^{-1} \in A\}).$$

Then $|v|^3 \mu^*(dv)$ is a finite measure, with bounded support.

Main theorem (two-sided case)

Assume that $\sigma = 0$. Let $\{x_i\}_{1 \le i \le n}$ and $\{w_i\}_{1 \le i \le n}$ be the nodes and the weights of the Gaussian quadrature of order n with respect to the measure $|v|^3 \mu^*(\mathrm{d}v)$. We define

$$\psi_n(z) := az + z^2 \sum_{i=1}^n \frac{w_i}{1 - zx_i}.$$

Theorem

- (i) The function $\psi_n(z)$ is the [n+1/n] Padé approximant of $\psi(z)$.
- (ii) The function $\psi_n(z)$ is the Laplace exponent of a hyperexponential process $X^{(n)}$ having the characteristic triple $(a, \sigma_n^2, \pi_n)_{h \equiv x}$, where

Main theorem (two-sided case)

Theorem

(ii)

$$\pi_n(x) := \begin{cases} \sum_{\substack{1 \le i \le n : x_i < 0 \\ 1 \le i \le n : x_i > 0}} w_i |x_i|^{-3} e^{-\frac{x}{x_i}}, & \text{if } x < 0, \end{cases}$$

(iii) The random variables $X_1^{(n)}$ and X_1 satisfy $\mathbb{E}[(X_1^{(n)})^j] = \mathbb{E}[(X_1)^j]$ for $1 \le j \le 2n + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Numerical results 0000000000

Convergence

Theorem

For any compact set $A \subset \mathbb{C} \setminus \{(-\infty, -\hat{\rho}] \cup [\rho, \infty)\}$ there exist $c_1 = c_1(A) > 0$ and $c_2 = c_2(A) > 0$ such that for all $z \in A$ and all $n \ge 1$

$$|\psi_n(z) - \psi(z)| < c_1 e^{-c_2 n}.$$

Daniel Hackmann

One-sided processes

• For CM subordinators, all three functions $\psi^{[n/n]}(z)$, $\psi^{[n+1/n]}(z)$, $\psi^{[n+2/n]}(z)$ are Laplace exponents of hyperexponential processes.

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

One-sided processes

- For CM subordinators, all three functions $\psi^{[n/n]}(z)$, $\psi^{[n+1/n]}(z)$, $\psi^{[n+2/n]}(z)$ are Laplace exponents of hyperexponential processes.
- For CM spectrally-positive processes of infinite variation, only two functions $\psi^{[n+1/n]}(z)$, $\psi^{[n+2/n]}(z)$ are Laplace exponents of hyperexponential processes.

One-sided processes

- For CM subordinators, all three functions $\psi^{[n/n]}(z)$, $\psi^{[n+1/n]}(z)$, $\psi^{[n+2/n]}(z)$ are Laplace exponents of hyperexponential processes.
- For CM spectrally-positive processes of infinite variation, only two functions $\psi^{[n+1/n]}(z)$, $\psi^{[n+2/n]}(z)$ are Laplace exponents of hyperexponential processes.
- There exist explicit formulas for a number of important examples: In the VG case we have $\psi^{[n/n]}(z) = P_n(z)/Q_n(z)$, where

$$P_n(z) = 2\sum_{j=0}^n \binom{n}{j}^2 \left[H_{n-j} - H_j\right] (1-z)^j, Q_n(z) = z^n P_n\left(\frac{2}{z} - 1\right).$$

and $H_j := 1 + 1/2 + \dots + 1/j$.

How do we prove all these results?

• One can show that only $\psi^{[n/n]}(z)$, $\psi^{[n+1/n]}(z)$ and $\psi^{[n+2/n]}(z)$ can possibly be Laplace exponents of a Lévy process

How do we prove all these results?

- One can show that only $\psi^{[n/n]}(z)$, $\psi^{[n+1/n]}(z)$ and $\psi^{[n+2/n]}(z)$ can possibly be Laplace exponents of a Lévy process
- The Lévy-Khintchine formula + Fubini's theorem + change of variables give us

$$\psi(z) = \frac{\sigma^2}{2}z^2 + az + z^2 \int_{[a,b]} \frac{|v|^3 \mu^*(\mathrm{d}v)}{1 - vz},$$

where a < 0 < b.

《曰》 《圖》 《臣》 《臣》

How do we prove all these results?

- One can show that only $\psi^{[n/n]}(z)$, $\psi^{[n+1/n]}(z)$ and $\psi^{[n+2/n]}(z)$ can possibly be Laplace exponents of a Lévy process
- The Lévy-Khintchine formula + Fubini's theorem + change of variables give us

$$\psi(z) = \frac{\sigma^2}{2}z^2 + az + z^2 \int_{[a,b]} \frac{|v|^3 \mu^*(\mathrm{d}v)}{1 - vz},$$

where a < 0 < b.

• $\psi(z)$ is closely related to *Stieltjes functions*:

$$f(z) := \int_{[0,R^{-1}]} \frac{\nu(\mathrm{d}u)}{1+zu}$$

Numerical results 0000000000

Some more theory on Stieltjes functions.

• $f^{[m/n]}(z)$ always exists provided $m \ge n-1$.

Some more theory on Stieltjes functions.

- $f^{[m/n]}(z)$ always exists provided $m \ge n-1$.
- The poles of $f^{[m/n]}(z)$ are simple, real and less than -R, and have positive residues.

Some more theory on Stieltjes functions.

- $f^{[m/n]}(z)$ always exists provided $m \ge n-1$.
- The poles of $f^{[m/n]}(z)$ are simple, real and less than -R, and have positive residues.

$$f^{[n-1/n]}(z) = \frac{(-z)^{n-1}q_{n-1}(-1/z)}{(-z)^n p_n(-1/z)} = \sum_{i=1}^n \frac{w_i}{1+x_i z}.$$

Some more theory on Stieltjes functions.

- $f^{[m/n]}(z)$ always exists provided $m \ge n-1$.
- The poles of $f^{[m/n]}(z)$ are simple, real and less than -R, and have positive residues.

$$f^{[n-1/n]}(z) = \frac{(-z)^{n-1}q_{n-1}(-1/z)}{(-z)^n p_n(-1/z)} = \sum_{i=1}^n \frac{w_i}{1+x_i z}.$$

Plus convergence results

Outline

2 Theoretical results

3 Numerical results

Daniel Hackmann

<ロ> (四) (四) (日) (日) (日)

Numerical results •000000000

Comparing the Lévy density

Figure: The graph of $x\pi(x)$ (black curve) and $x\pi^{[n/n]}(x)$, where $\pi(x) = \exp(-x)/x$ is the Lévy density of the Gamma subordinator, and $\pi^{[n/n]}(x)$ is the Lévy density corresponding to $\psi^{[n/n]}(z)$ Padé approximation. Blue, green and red curves correspond to $n \in \{5, 10, 20\}$.

Numerical results 000000000

Comparing the Lévy density

Figure: The graph of $x\pi(x)$ (black curve) and $x\pi^{[n/n]}(x)$, where $\pi(x) = \exp(-x)/x$ is the Lévy density of the Gamma subordinator, and $\pi^{[n/n]}(x)$ is the Lévy density corresponding to $\psi^{[n/n]}(z)$ Padé approximation. Blue, green and red curves correspond to $n \in \{5, 10, 20\}$.

Numerical results 000000000

Comparing the CDF of X_2

$\epsilon_{n,k}(2)$	k = 0	k = 1	k = 2
n = 5	3.3e - 4	3.2e - 4	5.4e - 4
n = 10	2.6e - 5	2.8e - 5	5.6e - 5
n = 15	5.4e - 6	6.4e - 6	1.3e - 5
n = 20	1.8e - 6	2.1e - 6	4.6e - 6

Table: The values of $\epsilon_{n,k}(t) := \max_{x \ge 0} |\mathbb{P}(X_t \le x) - \mathbb{P}(X_t^{(n,k)} \le x)|$, where X is the Gamma process with $\psi(z) = -\ln(1-z)$ and the process $X^{(n,k)}$ has Laplace exponent $\psi^{[n+k/n]}$.

Daniel Hackmann

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Math Finance applications

We will work with the following two processes: the VG process V defined by the Laplace exponent

$$\psi(z) = \mu z - \frac{1}{\nu} \log\left(1 - \frac{z}{a}\right) - \frac{1}{\nu} \log\left(1 + \frac{z}{\hat{a}}\right),$$

and parameters

$$(a, \hat{a}, \nu) = (21.8735, 56.4414, 0.20),$$

and the CGMY process ${\cal Z}$ defined by the Laplace exponent

$$\psi(z) = \mu z + C \Gamma(-Y) \left[(M-z)^Y - M^Y + (G+z)^Y - G^Y \right],$$

and parameters

$$(C, G, M, Y) = (1, 8.8, 14.5, 1.2).$$

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

European call option

	two-sided	one-sided	one-sided	one-sided
	$\left[2N+1/2N\right]$	[N/N]	[N+1/N]	[N+2/N]
N = 1	-1.58e-2	9.12e-2	7.02e-3	-3.02e-2
N=2	1.66e-3	-6.16e-3	4.80e-3	-7.82e-4
N=3	6.20e-4	-1.28e-3	-4.32e-5	6.78e-4
N=4	1.25e-4	1.88e-4	-1.98e-4	9.81e-5
N = 5	-7.19e-5	8.82e-5	-2.62e-5	-2.40e-5
N = 7	4.34e-6	-8.48e-6	5.82e-6	-1.71e-6
N = 9	-7.72e-8	3.31e-7	-6.99e-7	7.35e-7
N = 12	4.85e-7	-1.81e-8	4.97e-8	-6.10e-8
N = 15	-8.56e-8	-1.37e-9	-3.31e-9	6.06e-9

Table: The error in computing the price of the European call option for the VG V-model. Initial stock price is $S_0 = 100$, strike price K = 100, maturity T = 0.25 and interest rate r = 0.04. The benchmark price is 2.5002779303.

マロト イラト イラト

Numerical results 0000000000

European call option

	two-sided	one-sided	one-sided
	[2N+1/2N]	[N+1/N]	[N+2/N]
N = 1	-2.75e-2	1.93e-2	-3.72e-3
N=2	-4.86e-6	-4.19e-6	9.5e-5
N = 3	4.80e-7	-1.48e-5	-2.54e-7
N = 4	2.9e-8	6.41e-7	-1.55e-7
N = 5	1.14e-9	5.58e-9	6.95e-9

Table: The error in computing the price of the European call option for the CGMY Z-model. The benchmark price is 11.9207826467.

・ロッ ・回 ・ ・ ヨッ

ъ

Asian option

Asian call option

$$C(S_0, K, T) := e^{-rT} \mathbb{E}\left[\left(\int_0^T S_u \mathrm{d}u - K\right)^+\right].$$

We set the parameters $S_0 = 100$, r = 0.03, T = 1, K = 90 for the VG process and K = 110 for the CGMY process.

	two-sided $[2N+1/2N]$	one-sided $[N/N]$	one-sided $[N+1/N]$	one-sided $[N+2/N]$
N = 1	-1.87e-3	1.01e-3	-1.82e-3	9.88e-4
N=2	9.49e-5	2.89e-4	-6.33e-5	3.27e-5
N = 3	1.30e-6	8.85e-6	-4.24e-6	3.99e-6
N = 4	-2.83e-6	1.07e-6	-1.36e-6	3.16e-7
N = 5	-1.11e-7	-2.48e-8	-5.91e-7	-3.81e-7

Table: The error in computing the price of the Asian option for the VG V-model. The benchmark price is 11.188589 (calculated using the [91/90] two-sided approximation)

Asian option

	two-sided	one-sided	one-sided
	[2N+1/2N]	[N+1/N]	[N+2/N]
N = 1	1.88e-4	7.42e-4	-1.19e-3
N=2	4.03e-6	9.05e-5	5.39e-6
N = 3	-3.58e-7	-2.64e-6	7.93e-8
N = 4	-3.88e-7	-1.01e-7	-1.21e-7
N = 5	-5.26e-7	-2.47e-7	-2.49e-7

Table: The error in computing the price of the Asian option for the CGMY Z-model. The benchmark price is 9.959300 (calculated using the [91/90] two-sided approximation).

・ロッ ・回 ・ ・ ヨッ

э.

Barrier option

Down-and-out barrier put option:

$$D(S_0, K, B, T) := e^{-rT} \mathbb{E} \left[(K - S_T)^+ \mathbf{1}_{\{S_t > B \text{ for } 0 \le t \le T\}} \right],$$

We calculate barrier option prices for the process V, for four values $S_0 \in \{81, 91, 101, 111\}$ and with other parameters given by K = 100, B = 80, r = 0.04879 and T = 0.5

	$S_0 = 81$	$S_0 = 91$	$S_0 = 101$	$S_0 = 111$
Benchmark	3.39880	7.38668	1.40351	0.04280
N=2	3.44551	7.39225	1.40527	0.04233
N = 4	3.40209	7.38957	1.40329	0.04258
N = 6	3.39910	7.38939	1.40332	0.04258
N = 8	3.39856	7.38936	1.40332	0.04258
N = 10	3.39853	7.38936	1.40332	0.04258

Table: Barrier option prices calculated for the VG process V-model.Benchmark prices obtained from "Fast and accurate pricing of barrieroptions under Lévy processes" by Kudryavtsev and Levendorskii $\langle \mathbb{R} \rangle$

э.

Introduction	

References:

- D. Hackmann and A. Kuznetsov (2014)
 "Approximating Lévy processes with completely monotone jumps", arXiv:1404.0597.
- G. D. Allen, C. K. Chui, W. R. Madych, F. J. Narcowich, and P. W. Smith. Padé approximation of Stieltjes series.

Journal of approximation theory, 14:302–316, 1975.

 S. G. Baker and P. Graves-Morris. *Padé Approximants*, volume 1. Cambridge University Press, Cambridge–New York, 2 edition, 1996.

www.danhackmann.com

(E)